改善CSM分层

dev-VirtualTexture
wuyize 2022-08-24 13:30:09 +08:00
parent 3bf1444092
commit ddff01d880
3 changed files with 120 additions and 107 deletions

View File

@ -43,7 +43,7 @@ public:
float Zoom;
float Ratio;
float NearPlane = 10.f;
float FarPlane = 10000.f;
float FarPlane = 5000.f;
// constructor with vectors
Camera(QVector3D position = QVector3D(0.0f, 0.0f, 0.0f), QVector3D up = QVector3D(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH);

View File

@ -2,136 +2,146 @@
#include <qDebug>
Light::Light(Camera* camera)
: camera(camera)
, shadowCascadeLevels{ camera->FarPlane / 50.0f, camera->FarPlane / 25.0f, camera->FarPlane / 10.0f, camera->FarPlane / 2.0f }
: camera(camera)
//, shadowCascadeLevels{ camera->FarPlane / 25.0f, camera->FarPlane / 12.0f, camera->FarPlane / 6.0f, camera->FarPlane / 3.0f }
{
const float levelCount = 5;
const float lambda = 0.5;
for (int i = 1; i < levelCount; i++)
{
shadowCascadeLevels.push_back(
lambda * camera->NearPlane * pow(camera->FarPlane / camera->NearPlane, i / levelCount)
+ (1 - lambda) * (camera->NearPlane + i / levelCount * (camera->FarPlane - camera->NearPlane)));
//qDebug() << shadowCascadeLevels[i-1];
}
}
std::vector<QVector4D> Light::getFrustumCornersWorldSpace(const QMatrix4x4& projview)
{
const auto inv = projview.inverted();
const auto inv = projview.inverted();
std::vector<QVector4D> frustumCorners;
for (unsigned int x = 0; x < 2; ++x)
{
for (unsigned int y = 0; y < 2; ++y)
{
for (unsigned int z = 0; z < 2; ++z)
{
const QVector4D pt = inv * QVector4D(2.0f * x - 1.0f, 2.0f * y - 1.0f, 2.0f * z - 1.0f, 1.0f);
frustumCorners.push_back(pt / pt.w());
}
}
}
std::vector<QVector4D> frustumCorners;
for (unsigned int x = 0; x < 2; ++x)
{
for (unsigned int y = 0; y < 2; ++y)
{
for (unsigned int z = 0; z < 2; ++z)
{
const QVector4D pt = inv * QVector4D(2.0f * x - 1.0f, 2.0f * y - 1.0f, 2.0f * z - 1.0f, 1.0f);
frustumCorners.push_back(pt / pt.w());
}
}
}
return frustumCorners;
return frustumCorners;
}
std::vector<QVector4D> Light::getFrustumCornersWorldSpace(const QMatrix4x4& proj, const QMatrix4x4& view)
{
return getFrustumCornersWorldSpace(proj * view);
return getFrustumCornersWorldSpace(proj * view);
}
QMatrix4x4 Light::getLightSpaceMatrix(const float nearPlane, const float farPlane)
{
QMatrix4x4 proj;
proj.perspective(camera->Zoom, camera->Ratio, nearPlane, farPlane);
QMatrix4x4 proj;
proj.perspective(camera->Zoom, camera->Ratio, nearPlane, farPlane);
const std::vector<QVector4D> corners = getFrustumCornersWorldSpace(proj, camera->GetViewMatrix());
const std::vector<QVector4D> corners = getFrustumCornersWorldSpace(proj, camera->GetViewMatrix());
QVector3D center = QVector3D(0, 0, 0);
for (const QVector4D& v : corners)
{
center += QVector3D(v);
}
center /= corners.size();
QVector3D center = QVector3D(0, 0, 0);
for (const QVector4D& v : corners)
{
center += QVector3D(v);
}
center /= corners.size();
QVector3D right = QVector3D::crossProduct(lightDirection, QVector3D(1, 0, 0)).normalized();
QVector3D up = QVector3D::crossProduct(right, lightDirection).normalized();
QMatrix4x4 lightView;
//qDebug() << "lightDirection:" << lightDirection << "up:" << up;
lightView.lookAt(center, center - lightDirection, up);
QVector3D right = QVector3D::crossProduct(lightDirection, QVector3D(1, 0, 0)).normalized();
QVector3D up = QVector3D::crossProduct(right, lightDirection).normalized();
QMatrix4x4 lightView;
//qDebug() << "lightDirection:" << lightDirection << "up:" << up;
lightView.lookAt(center, center - lightDirection, up);
float minX = std::numeric_limits<float>::max();
float maxX = std::numeric_limits<float>::min();
float minY = std::numeric_limits<float>::max();
float maxY = std::numeric_limits<float>::min();
float minZ = std::numeric_limits<float>::max();
float maxZ = std::numeric_limits<float>::min();
for (const QVector4D& v : corners)
{
QVector4D trf = lightView * v;
//qDebug() << v;
//qDebug() << trf;
minX = std::min(minX, trf.x());
maxX = std::max(maxX, trf.x());
minY = std::min(minY, trf.y());
maxY = std::max(maxY, trf.y());
minZ = std::min(minZ, -trf.z());
maxZ = std::max(maxZ, -trf.z());
}
for (const QVector3D& v : model->AABB)
{
const QVector4D trf = lightView * QVector4D(v, 1);
//qDebug() << v;
//qDebug() << trf;
//minX = std::min(minX, trf.x());
//maxX = std::max(maxX, trf.x());
//minY = std::min(minY, trf.y());
//maxY = std::max(maxY, trf.y());
minZ = std::min(minZ, -trf.z());
//maxZ = std::max(maxZ, trf.z());
}
//qDebug() << minZ;
// Tune this parameter according to the scene
float minX = std::numeric_limits<float>::max();
float maxX = std::numeric_limits<float>::min();
float minY = std::numeric_limits<float>::max();
float maxY = std::numeric_limits<float>::min();
float minZ = std::numeric_limits<float>::max();
float maxZ = std::numeric_limits<float>::min();
for (const QVector4D& v : corners)
{
QVector4D trf = lightView * v;
//qDebug() << v;
//qDebug() << trf;
minX = std::min(minX, trf.x());
maxX = std::max(maxX, trf.x());
minY = std::min(minY, trf.y());
maxY = std::max(maxY, trf.y());
minZ = std::min(minZ, -trf.z());
maxZ = std::max(maxZ, -trf.z());
}
for (const QVector3D& v : model->AABB)
{
const QVector4D trf = lightView * QVector4D(v, 1);
//qDebug() << v;
//qDebug() << trf;
//minX = std::min(minX, trf.x());
//maxX = std::max(maxX, trf.x());
//minY = std::min(minY, trf.y());
//maxY = std::max(maxY, trf.y());
minZ = std::min(minZ, -trf.z());
//maxZ = std::max(maxZ, trf.z());
}
//qDebug() << minZ;
// Tune this parameter according to the scene
/* constexpr float zMult = 10.0f;
if (minZ < 0)
{
minZ *= zMult;
}
else
{
minZ /= zMult;
}
if (maxZ < 0)
{
maxZ /= zMult;
}
else
{
maxZ *= zMult;
}*/
if (minZ < 0)
{
minZ *= zMult;
}
else
{
minZ /= zMult;
}
if (maxZ < 0)
{
maxZ /= zMult;
}
else
{
maxZ *= zMult;
}*/
QMatrix4x4 lightProjection;
//qDebug() << minX<< maxX<< minY<< maxY<< minZ<< maxZ;
lightProjection.ortho(minX, maxX, minY, maxY, minZ, maxZ);
frustumSizes.push_back(std::max(maxX - minX, maxY - minY));
return lightProjection * lightView;
QMatrix4x4 lightProjection;
//qDebug() << minX<< maxX<< minY<< maxY<< minZ<< maxZ;
lightProjection.ortho(minX, maxX, minY, maxY, minZ, maxZ);
frustumSizes.push_back(std::max(maxX - minX, maxY - minY));
return lightProjection * lightView;
}
std::vector<QMatrix4x4> Light::getLightSpaceMatrices()
{
std::vector<QMatrix4x4> ret;
frustumSizes.clear();
for (size_t i = 0; i < shadowCascadeLevels.size() + 1; ++i)
{
if (i == 0)
{
ret.push_back(getLightSpaceMatrix(camera->NearPlane, shadowCascadeLevels[i]));
}
else if (i < shadowCascadeLevels.size())
{
ret.push_back(getLightSpaceMatrix(shadowCascadeLevels[i - 1], shadowCascadeLevels[i]));
}
else
{
ret.push_back(getLightSpaceMatrix(shadowCascadeLevels[i - 1], camera->FarPlane));
}
}
return ret;
std::vector<QMatrix4x4> ret;
frustumSizes.clear();
for (size_t i = 0; i < shadowCascadeLevels.size() + 1; ++i)
{
if (i == 0)
{
ret.push_back(getLightSpaceMatrix(camera->NearPlane, shadowCascadeLevels[i]));
}
else if (i < shadowCascadeLevels.size())
{
ret.push_back(getLightSpaceMatrix(shadowCascadeLevels[i - 1], shadowCascadeLevels[i]));
}
else
{
ret.push_back(getLightSpaceMatrix(shadowCascadeLevels[i - 1], camera->FarPlane));
}
}
return ret;
}

View File

@ -84,13 +84,13 @@ float Calculate_Avg_Dblockreceiver(vec2 projCoords , int AvgTextureSize)
return result/(AvgTextureSize*AvgTextureSize*2*2);
}
float ShadowCalculation(vec3 fragPosWorldSpace, vec3 normal)
float ShadowCalculation(vec3 fragPosWorldSpace, vec3 normal, out int layer)
{
// select cascade layer
vec4 fragPosViewSpace = view * vec4(fragPosWorldSpace, 1.0);
float depthValue = abs(fragPosViewSpace.z);
int layer = -1;
layer = -1;
for (int i = 0; i < shadowCascadeCount; ++i)
{
if (depthValue < shadowCascadePlaneDistances[i])
@ -225,11 +225,14 @@ void main()
//vec4 FragPosLightSpace = lightSpaceMatrix * vec4(WorldPos, 1.0);
//float bias = 0.08 * max(0.05 * (1.0 - dot(N, L)), 0.005);
float shadow = ShadowCalculation(WorldPos, N);
int debugLayer;
float shadow = ShadowCalculation(WorldPos, N, debugLayer);
//vec3 color = ambient + Lo;
//vec3 color = indirect*1;
vec3 color = ambient + (1.0 - shadow) * Lo;
//color*=mix(mix(vec3(1,0,0), vec3(0,1,0), float(debugLayer)/shadowCascadeCount/0.5),
//mix(vec3(0,1,0), vec3(0,0,1), float(debugLayer)/(shadowCascadeCount)/0.5-1), float(debugLayer)/(shadowCascadeCount));
//vec3 color = (1.0 - shadow) * Lo;
//vec3 color = (1.0 - shadow) * Lo + indirect*10;
color = color / (color + vec3(1.0));