|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
#version 330 core
|
|
|
|
|
#version 450 core
|
|
|
|
|
|
|
|
|
|
layout (location = 0) out vec4 gBaseColor;
|
|
|
|
|
layout (location = 1) out vec3 gNormal;
|
|
|
|
@ -9,10 +9,485 @@ in vec2 TexCoords;
|
|
|
|
|
in vec3 WorldPos;
|
|
|
|
|
in vec3 Normal;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
float border;
|
|
|
|
|
|
|
|
|
|
mat2 inv(mat2 m){
|
|
|
|
|
return mat2(m[1][1],-m[0][1],-m[1][0],m[0][0])/(m[0][0]*m[1][1]-m[1][0]*m[0][1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float abs_min(float a, float b){
|
|
|
|
|
if(abs(a)<abs(b)){
|
|
|
|
|
return a;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int i_mod(int a, int m){
|
|
|
|
|
return int(mod(float(a), float(m)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float line_dist(vec2 uv, const vec2 p0, vec2 p1){
|
|
|
|
|
vec2 tang=p1-p0;
|
|
|
|
|
vec2 nor=normalize(vec2(tang.y,-tang.x));
|
|
|
|
|
|
|
|
|
|
if(dot(tang,uv)<dot(tang,p0)){
|
|
|
|
|
return distance(p0,uv);
|
|
|
|
|
}
|
|
|
|
|
else if(dot(tang,uv)>dot(tang,p1)){
|
|
|
|
|
return distance(p1,uv);
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
return dot(nor,uv)-dot(nor,p0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool int_test(vec2 uv, vec2 last_point, vec2 p0, vec2 p1){
|
|
|
|
|
last_point-=uv;
|
|
|
|
|
p0-=uv;
|
|
|
|
|
p1-=uv;
|
|
|
|
|
|
|
|
|
|
bool ret;
|
|
|
|
|
if(p0.y==0.){
|
|
|
|
|
ret=(p0.x>=0. && p1.y*last_point.y<0.);
|
|
|
|
|
}
|
|
|
|
|
else if(p1.y==0.){
|
|
|
|
|
ret=false;
|
|
|
|
|
}
|
|
|
|
|
else if(p0.y*p1.y<0.){
|
|
|
|
|
if(p0.x>=0. && p1.x>=0.){
|
|
|
|
|
ret=true;
|
|
|
|
|
}
|
|
|
|
|
else if (p0.x<0. && p1.x<0.){
|
|
|
|
|
ret=false;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
vec2 nor;
|
|
|
|
|
if(p0.y>p1.y){
|
|
|
|
|
nor=p0-p1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
nor=p1-p0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nor=vec2(nor.y,-nor.x);
|
|
|
|
|
if(dot(nor,p0)<0.){
|
|
|
|
|
ret=false;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
ret=true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
ret=false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool tri_test(vec2 uv, vec2 p0, vec2 p1, vec2 p2, bool inside){
|
|
|
|
|
vec2 nor1=normalize(p0-p1);
|
|
|
|
|
nor1=vec2(nor1.y,-nor1.x);
|
|
|
|
|
vec2 nor2=normalize(p1-p2);
|
|
|
|
|
nor2=vec2(nor2.y,-nor2.x);
|
|
|
|
|
vec2 tan3=normalize(p2-p0);
|
|
|
|
|
vec2 nor3=vec2(tan3.y,-tan3.x);
|
|
|
|
|
|
|
|
|
|
if(inside){
|
|
|
|
|
if(dot(tan3,p0)>=dot(tan3,uv) || dot(tan3,p2)<=dot(tan3,uv)){
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float brd=max(dot(nor3,nor1),dot(nor3,nor2))*border;
|
|
|
|
|
return (dot(uv,nor1)>=dot(p0,nor1) && dot(uv,nor2)>=dot(p1,nor2) && dot(uv,nor3)>=dot(p2,nor3)+brd) ||
|
|
|
|
|
(dot(uv,nor1)<=dot(p0,nor1) && dot(uv,nor2)<=dot(p1,nor2) && dot(uv,nor3)<=dot(p2,nor3)-brd);
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
float brd1=dot(nor1,tan3)*border;
|
|
|
|
|
float brd2=dot(nor2,tan3)*border;
|
|
|
|
|
|
|
|
|
|
if(dot(tan3,p0)>=dot(tan3,uv)-brd1 || dot(tan3,p2)<=dot(tan3,uv)-brd2){
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return (dot(uv,nor1)>=dot(p0,nor1)-border && dot(uv,nor2)>=dot(p1,nor2)-border && dot(uv,nor3)>=dot(p2,nor3)) ||
|
|
|
|
|
(dot(uv,nor1)<=dot(p0,nor1)+border && dot(uv,nor2)<=dot(p1,nor2)+border && dot(uv,nor3)<=dot(p2,nor3));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float bezier_sd(vec2 uv, vec2 p0, vec2 p1, vec2 p2){
|
|
|
|
|
|
|
|
|
|
const mat2 trf1 = mat2(-1, 2, 1, 2);
|
|
|
|
|
mat2 trf2 = inv(mat2(p0-p1, p2-p1));
|
|
|
|
|
mat2 trf=trf1*trf2;
|
|
|
|
|
|
|
|
|
|
uv-=p1;
|
|
|
|
|
vec2 xy=trf*uv;
|
|
|
|
|
xy.y-=1.;
|
|
|
|
|
|
|
|
|
|
vec2 gradient;
|
|
|
|
|
gradient.x=2.*trf[0][0]*(trf[0][0]*uv.x+trf[1][0]*uv.y)-trf[0][1];
|
|
|
|
|
gradient.y=2.*trf[1][0]*(trf[0][0]*uv.x+trf[1][0]*uv.y)-trf[1][1];
|
|
|
|
|
|
|
|
|
|
return (xy.x*xy.x-xy.y)/length(gradient);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float render_serif(vec2 uv){
|
|
|
|
|
|
|
|
|
|
uv.y-=.5;
|
|
|
|
|
uv*=1.8;
|
|
|
|
|
border*=1.8;
|
|
|
|
|
uv.y+=.5;
|
|
|
|
|
|
|
|
|
|
uv.x+=.1;
|
|
|
|
|
|
|
|
|
|
float d = 1e38;
|
|
|
|
|
float poly_d = 1e38;
|
|
|
|
|
float d1 = 1e38;
|
|
|
|
|
|
|
|
|
|
vec2 p0,p1,p2;
|
|
|
|
|
/*
|
|
|
|
|
if(all(lessThan(abs(uv-vec2(-1.29705090246,0.49556210191)),vec2(0.203622751405,0.194877434267)+vec2(border)))){
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.50067365386,0.690439536177),vec2(-1.50067365386,0.662506649919)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.34847869375,0.690439536177),vec2(-1.50067365386,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.34847869375,0.662506649919),vec2(-1.34847869375,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.50067365386,0.662506649919),vec2(-1.34847869375,0.662506649919)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.50067365386,0.328356479174),vec2(-1.50067365386,0.300684667642)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.50067365386,0.300684667642),vec2(-1.34847869375,0.300684667642)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.34847869375,0.300684667642),vec2(-1.34847869375,0.328356479174)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.34847869375,0.328356479174),vec2(-1.50067365386,0.328356479174)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.24562309793,0.328356479174),vec2(-1.24562309793,0.300684667642)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.09342815105,0.328356479174),vec2(-1.24562309793,0.328356479174)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.09342815105,0.300684667642),vec2(-1.09342815105,0.328356479174)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.24562309793,0.300684667642),vec2(-1.09342815105,0.300684667642)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.24562309793,0.690439536177),vec2(-1.24562309793,0.662506649919)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.09342815105,0.690439536177),vec2(-1.24562309793,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.09342815105,0.662506649919),vec2(-1.09342815105,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.24562309793,0.662506649919),vec2(-1.09342815105,0.662506649919)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.45107323965,0.300684667642),vec2(-1.39807911127,0.300684667642)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.39807911127,0.300684667642),vec2(-1.39807911127,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.39807911127,0.690439536177),vec2(-1.45107323965,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.45107323965,0.690439536177),vec2(-1.45107323965,0.300684667642)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.45107323965,0.527802348895),vec2(-1.45107323965,0.495953672637)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.45107323965,0.495953672637),vec2(-1.14302855203,0.495953672637)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.14302855203,0.495953672637),vec2(-1.14302855203,0.527802348895)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.14302855203,0.527802348895),vec2(-1.45107323965,0.527802348895)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.19602268041,0.300684667642),vec2(-1.14302855203,0.300684667642)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.14302855203,0.300684667642),vec2(-1.14302855203,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.14302855203,0.690439536177),vec2(-1.19602268041,0.690439536177)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.19602268041,0.690439536177),vec2(-1.19602268041,0.300684667642)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
if(all(lessThan(abs(uv-vec2(-0.905207605282,0.43943531671)),vec2(0.131571631799,0.146321237064)+vec2(border)))){
|
|
|
|
|
p0=vec2(-0.980652472562,0.432256320122);p1=vec2(-0.980652472562,0.376129514241);p2=vec2(-0.959444621888,0.347459653556);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.959444621888,0.347459653556);p1=vec2(-0.938361593128,0.318958533541);p2=vec2(-0.897114929876,0.318958533541);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.897114929876,0.318958533541);p1=vec2(-0.865527286983,0.318958533541);p2=vec2(-0.845437632053,0.335419078254);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.845437632053,0.335419078254);p1=vec2(-0.825063806547,0.352112459345);p2=vec2(-0.81697111046,0.384744318419);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.778334987661,0.384744318419);p1=vec2(-0.789821407019,0.339059715715);p2=vec2(-0.82088690046,0.316086918361);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.82088690046,0.316086918361);p1=vec2(-0.851691401898,0.293114079646);p2=vec2(-0.902074977419,0.293114079646);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.902074977419,0.293114079646);p1=vec2(-0.962900714754,0.293114079646);p2=vec2(-0.999970513281,0.333055493352);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.999970513281,0.333055493352);p1=vec2(-1.03677923708,0.373257899062);p2=vec2(-1.03677923708,0.439565833392);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-1.03677923708,0.439565833392);p1=vec2(-1.03677923708,0.505351659632);p2=vec2(-1.00049262137,0.545554106703);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-1.00049262137,0.545554106703);p1=vec2(-0.964206005662,0.585756553774);p2=vec2(-0.905207625963,0.585756553774);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.905207625963,0.585756553774);p1=vec2(-0.842293414903,0.585756553774);p2=vec2(-0.808617339647,0.546859356249);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.808617339647,0.546859356249);p1=vec2(-0.774941264391,0.508223274812);p2=vec2(-0.773635973483,0.434344752485);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, false)){
|
|
|
|
|
d=min(d,bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.830284887455,0.462016564017);p1=vec2(-0.831851211727,0.510572740539);p2=vec2(-0.850763015272,0.535223303252);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.850763015272,0.535223303252);p1=vec2(-0.869704151709,0.559912099879);p2=vec2(-0.905207625963,0.559912099879);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.905207625963,0.559912099879);p1=vec2(-0.938361593128,0.559912099879);p2=vec2(-0.957418587479,0.535111893535);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
p0=vec2(-0.957418587479,0.535111893535);p1=vec2(-0.976475566475,0.510311707175);p2=vec2(-0.980652472562,0.462016564017);
|
|
|
|
|
if(tri_test(uv, p0, p1, p2, true)){
|
|
|
|
|
d=min(d,-bezier_sd(uv, p0, p1, p2));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.966462321887,0.559912099879),vec2(-0.841030169481,0.559912099879)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.905207625963,0.585756553774),vec2(-0.966462321887,0.559912099879)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.841030169481,0.559912099879),vec2(-0.905207625963,0.585756553774)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.82088690046,0.316086918361),vec2(-0.81910715467,0.318958533541)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.81910715467,0.318958533541),vec2(-0.965419171536,0.318958533541)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.965419171536,0.318958533541),vec2(-0.902074977419,0.293114079646)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.902074977419,0.293114079646),vec2(-0.82088690046,0.316086918361)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.773817587078,0.434928897242),vec2(-0.808617339647,0.546859356249)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.808617339647,0.546859356249),vec2(-0.882523641701,0.576621645388)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.882523641701,0.576621645388),vec2(-0.773817587078,0.434928897242)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.81697111046,0.384744318419),vec2(-0.834987634664,0.312096998846)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.834987634664,0.312096998846),vec2(-0.82088690046,0.316086918361)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.82088690046,0.316086918361),vec2(-0.778334987661,0.384744318419)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.778334987661,0.384744318419),vec2(-0.81697111046,0.384744318419)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.82088690046,0.316086918361),vec2(-0.778334987661,0.384744318419)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.778334987661,0.384744318419),vec2(-0.785237494603,0.384744318419)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.785237494603,0.384744318419),vec2(-0.894429408392,0.295277456717)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.894429408392,0.295277456717),vec2(-0.82088690046,0.316086918361)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.829392250654,0.434344752485),vec2(-0.773635973483,0.434344752485)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.833342939816,0.556816429474),vec2(-0.829392250654,0.434344752485)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.808617339647,0.546859356249),vec2(-0.833342939816,0.556816429474)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.773635973483,0.434344752485),vec2(-0.808617339647,0.546859356249)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.00049262137,0.545554106703),vec2(-1.03677923708,0.439565833392)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03677923708,0.439565833392),vec2(-1.03493619641,0.434232780007)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03493619641,0.434232780007),vec2(-0.924880247944,0.577456322027)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.924880247944,0.577456322027),vec2(-1.00049262137,0.545554106703)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.033868039,0.448069047365),vec2(-1.03677923708,0.439565833392)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03677923708,0.439565833392),vec2(-0.999970513281,0.333055493352)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.999970513281,0.333055493352),vec2(-0.926665359012,0.303146964146)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.926665359012,0.303146964146),vec2(-1.033868039,0.448069047365)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.02909290529,0.462016564017),vec2(-1.03677923708,0.439565833392)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03677923708,0.439565833392),vec2(-1.03497489278,0.434344752485)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03497489278,0.434344752485),vec2(-0.773635973483,0.434344752485)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.773635973483,0.434344752485),vec2(-0.782239281314,0.462016564017)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.782239281314,0.462016564017),vec2(-1.02909290529,0.462016564017)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.972402534183,0.557405817862),vec2(-1.00049262137,0.545554106703)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.00049262137,0.545554106703),vec2(-1.03677923708,0.439565833392)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03677923708,0.439565833392),vec2(-0.999970513281,0.333055493352)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.999970513281,0.333055493352),vec2(-0.992084221177,0.329837883348)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.992084221177,0.329837883348),vec2(-0.972402534183,0.557405817862)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
d1=1e38;
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.980652472562,0.553925021021),vec2(-1.00049262137,0.545554106703)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.00049262137,0.545554106703),vec2(-1.03677923708,0.439565833392)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-1.03677923708,0.439565833392),vec2(-0.999970513281,0.333055493352)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.999970513281,0.333055493352),vec2(-0.980652472562,0.325173725818)));
|
|
|
|
|
d1=abs_min(d1,line_dist(uv,vec2(-0.980652472562,0.325173725818),vec2(-0.980652472562,0.553925021021)));
|
|
|
|
|
|
|
|
|
|
if(d1<=0.){
|
|
|
|
|
return d1;
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
poly_d=min(d1,poly_d);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d=min(poly_d,d);
|
|
|
|
|
|
|
|
|
|
return d;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void mainImage( out vec4 fragColor, in vec2 fragCoord ){
|
|
|
|
|
border = 0.0;
|
|
|
|
|
|
|
|
|
|
vec2 uv = fragCoord.xy;
|
|
|
|
|
|
|
|
|
|
uv.x-=1;
|
|
|
|
|
//uv/=10;
|
|
|
|
|
float d = 1e38;
|
|
|
|
|
|
|
|
|
|
if(all(lessThan(abs(uv-vec2(0.0873228569516,0.500000020681)),vec2(1.58799651081,0.206885941035)+vec2(border))))
|
|
|
|
|
d=min(d,render_serif(uv));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fragColor=vec4(smoothstep(0., 0.0, d));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void main()
|
|
|
|
|
{
|
|
|
|
|
gBaseColor = vec4(TexCoords,1,1);
|
|
|
|
|
//gBaseColor = vec4(TexCoords,1,1);
|
|
|
|
|
//gBaseColor = vec4(240./255, 220./255,157./255,1);
|
|
|
|
|
mainImage(gBaseColor, vec2(1.,1.)-TexCoords);
|
|
|
|
|
gPosition = WorldPos;
|
|
|
|
|
gNormal = Normal;
|
|
|
|
|
gMetallicRoughness = vec2(0,0);
|
|
|
|
|
gNormal = normalize(Normal);
|
|
|
|
|
//gMetallicRoughness = vec2(1, 46./255);
|
|
|
|
|
gMetallicRoughness = vec2( 0 /*½ðÊô¶È*/, 0.8 /*´Ö²Ú¶È*/);
|
|
|
|
|
}
|